8^x*16^x+1=32

Simple and best practice solution for 8^x*16^x+1=32 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 8^x*16^x+1=32 equation:



8^x*16^x+1=32
We move all terms to the left:
8^x*16^x+1-(32)=0
We add all the numbers together, and all the variables
8^x*16^x-31=0
Wy multiply elements
128x^2-31=0
a = 128; b = 0; c = -31;
Δ = b2-4ac
Δ = 02-4·128·(-31)
Δ = 15872
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{15872}=\sqrt{256*62}=\sqrt{256}*\sqrt{62}=16\sqrt{62}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-16\sqrt{62}}{2*128}=\frac{0-16\sqrt{62}}{256} =-\frac{16\sqrt{62}}{256} =-\frac{\sqrt{62}}{16} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+16\sqrt{62}}{2*128}=\frac{0+16\sqrt{62}}{256} =\frac{16\sqrt{62}}{256} =\frac{\sqrt{62}}{16} $

See similar equations:

| 3x*4x+4=16 | | 2x-5=5-3x= | | 3z+20=8 | | 2/n=6/5 | | 8=1/11z | | x^-5=76 | | 3(a+)=2a+3 | | -5x+4=-5x+5 | | 1/60=2/x | | |-2r-4|=-12 | | 17-(4-6z)+4=42-22 | | 8b+2=3b+-2 | | 8v​=2 | | s+15=–9 | | 12+9x-6x-19=0 | | -4-3x=7x+16 | | 16x-1=12x-21 | | 0.6x+1.3=0.9-0.2 | | 1/4=5/8x8/1 | | 6x-4x+8x=+3x-9x | | x^2-1000200x+10000=0 | | 2x+4x-1=52 | | x^2+4x+4=19 | | 90/u=7 | | 5b+30=1b+6 | | 22m=-9 | | 4x(x-3)+1=(2x+3)^2-1 | | 2(3x+7)=-40+42 | | 3x+5x-x+7=5x² | | -16=12+2x-2 | | 4x+2⎡4-2(x+2)⎤=2x-4 | | 4x+2⎣4-2(x+2)⎦=2x-4 |

Equations solver categories